
WE13 LATENCY REDUCTION VIA CLIENT-SIDE PIWFETCHING

Aviploum N. Eden Brian W; Joh Trevor Mudge

Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor

anemmein. utn ich.edu, tnm@eecs .utnich. cdu, bwi(dumich edu

ABSTRACT

The rapid growth of the WWW has inspired
numerous techniques to reduce web latency. While some
of these techniques have not been implemented because
they either increase network rru$ic or require coapera-
tion between tiers. recent studies cast a shndow on tech-
niques already in use (e.g. proxy cachingl as U result of
the increasingly dynamic aspects of the WWW. Znpartic-
ular, the prol$erration of dynamically generated web
pages (ie. cgi, ASP), which are either linked to a dah-
base, or extract information from cookies. reduces the
efectiveness of cucheing techniques. Most techniques
attempt to improve on part of the overnll latency, and
ojen neglecf io address the internal latency, which can Be
a serious bottleneck in heterogeneous environments.

We propose a client-side prefetching mechu-
nism, where the decision of what to prefetch is leJ to the
user. We found it has the potential of reducing latency by
up to 81% in a homogeneous environment and 63% in a
heterogeneous environment. In data taken on the client,
the technique depicted the potential 10 decrease iotency
by ihree-fold Client-side prefetching does nor increase
network mafic, it attempt lo improve on all parts of
latency, and it can be implemented on the client side,
wilhowt the cooperation uf any other tier. Moreover. it
can work seumlessiy with any other Iutency reduction
technique. We advocate ihe inclusion of a suiiuble mech-
anism in fiture web browsers to support client-side
preyetching,

I. INTROIWCTION

The rapid growth of the WWW inspired numerous
techniques to reduce web latency. In this section, we first
describe the possible WWW environments, which those
techniques might work within. We than proceed to
describe the different techniques in the contcxt o f those
environments and highlight the advantages and disadvan-

tages. Finally we go on to describe client-side prefetch-
ing, which we believe can overcome most of the
disadvantages of earlier techniques.

A Environment

Figure 1 depicts a classic WWW architecture. A
web browser residing on the client machine is used to
request web pages from the server employing the WTTP
protocol. The request is channeled through a proxy
server, which might be used as a firewall, for caching,
prefetching o h n d filtering requests. If the proxy server
cannot service the request, it forwards it to the content
provider, which uses thc web server to service the
request. Depending on the request, the server might do
one of two things: If the request is static object (i.c.
HTML, JPEG, GIF, Applet, etc,), the server transfers it
back to the proxy server, which delivers it to the client.
On the other hand if thc request is for a dynamic object
(i.e. ASP, CGI, etc.), the server first constructs it, and
only then sends it to the proxy. The construction of the
object might first require querying a database server, then
constructing thc object according to the result set. In
another example, a dynamic object might be constructed
by first requesting a cookie from the client and then con-
structing the page. As can be seen in figure 1, we divided
the latency into three components: internal, external, and
object creation latencies. The internal latency consist of
the time it takes the proxy server to transfer the object to
the client. The external latency i s the time it takes the
server to respond and transfer the object to the proxy
server. Object creation latency applies only to objects,
which are created dynamically. It includes the time it
takes to the server to construct the object, either by query-
ing a database, a cookie, or simply proccs?ing a script.

Figure 2 exhibits the three most common configu-
rations in use on the WWW. The first describes as the
homogeneous three-tier architecture (2a), where the
proxy server i s connected via a fast connection to both the
server and the client. This kind of architecture is widely
used in corporate settings, where the middle tier (proxy)
might be used to provide security (a firewall), reduce

http://ich.edu
trev
Typewritten Text
 2000 IEEE International Symposium on Performance Analysis of Systems and Software.
 April, 2000. Austin, Texas.

internal latency axtarnal latency object crsation latency

Figure 1 - General WWW Architecture

latency (proxy caching), or monitor and filter content. In
the heterogeneous three-tier (2b) architecture the proxy is
connected to the servcr via fast connection while con-
nected to the client via a slow connection (i.e. modem).
This architecture i s used by most Internet home-users,
where the middle tier is usually a modem pool. While
this is its main role, it can also be used for caching,
prefetching, etc. In the third architecture (2c), the proxy
is not present and the client is connected to the server via
fast connection. A fourth architecture, where the client i s
connected to the server via a modem falls under a cate-
gory of a Bulletin Board Service (BBS) and will not be
described here.

3-tier homogeneous 3 - t k hetceterageneaus 2-tier

Figure 2 - General WWW Architcctures

I3 Latency Reduction Technlquei

Thc following section provides a brief overview of
latency reduction techniques.

B.l Cacheing

Cacheing in the WWW can be divided into three
categories: proxy, clients, and server side caching. In
proxy caching a computer (the proxy server) serves as a
cache of objects for a set of WWW clients. Ideally, the
proxy server i s physically located closer to the clients and
has fewer clients to serve than the content provider (the
WWW server). Clearly, if the proxy server has an object
cached, it will be able to service a request for this docu-
ment faster then the content provider. Due to the proxim-
ity to the client and smaller number of clients the proxy
has to service. Early studies suggested a significant

latency reduction if proxy caching is employed.

Gribble and Brewer showed that proxy cache hit
ratios can approach 60% for a pool of 8000 clients IS]. It
was shown that the hit ratio is a function of the number of
clients the proxy server services. Therefore, if the proxy
services more than 8000 clients, the hit ratio is likely to
incrcase. A later study by Kroger et al. accounted not
only the cache's hit ratio, but also the reduction in the cli-
ent's perceived latency [IO]. In this scenario it was shown
that the latency reduction could only reach 26% at best.
Another setback to proxy caching was shown by Caceres
et al: by looking at more details such the presence of
cookies in HTTP requests they observed a hit ratio of
only 35.2% (71. Furthermore, by considering aborted
connection they showed that the nctwork traffic between
the proxy server and the scrvice provider actually
increased. None of the studies above took in consider-
ation client-side cacheing. It is probable that some of the
objects, cached and serviced by the proxy server, arc
already cached on the client's side. For example, a hcavy
use of the BACK button on the wcb browser might regis-
ter a request at the proxy server (depending on the
browser configuration), but the objects requested are
already in the clients cache and thereforc can be serviced
by that cache. We suspect that not considering client-side
caching whilc examining proxy caching, results in an
optimistic evaluation of proxy caching, and we advocate
further studies to consider clicnt-side caching.

In spite of the pessimistic results from recent stud-
ies, proxy cacheing is employed. We speculate that as the
number of dynamically web pagcs constructed increases,
the benefit of employing a cache on a proxy server will
diminish.

In client side cacheing the objects (io. HTML, GIF
and JPEG files etc.) are stored for a limited period of time
on the local hard drive of the client. Only request made
by thc client, are cached, therefore, the benefit of sharing

194

cached object brought by other clients does not apply.
We speculate that a large portion of the benefit from cli-
ent side caching is limited to the use of the BACK button
in the web browser (Leo the cliei~t visited the page in the
current session and return to it using the BACK button).
Client side caching is employed in most web browsers on
the market and cachcing is activated by defautt.

Server side cacheing caches the content of web
pages, which are generated dynamically. Downloading
dynamically generated web pages (i.e. ASP and CGI
files) can incur large object creation latency. For example
the construction of a page cannot k completed before the
query is done for if querying data in a database generates
B web page, the construction of the page cannot be com-
pleted before the query is. If the query takes tong to com-
plete the user will notice a large latency when
downloading this page. Since temporal locality exists in
access pattern to thc web server (i.e. if a page is accessed
by one client. it is likely to be accessed by other clients in
the near future), caching those pages on the server is ben-
eficial. With server-side caching only few clients will
incur tho latency associated with generating the dynamic
web page. This technique was successfulty used by IDM
in the 1996 Atlanta OIympic games' official web site [2].

B.2 Prefetching

Prefetching on a proxy server has also been
explored. The knowledge whether to fetch a page or not
can come from the prefetching side or the server side.
Since thc server has more information regarding request
patterns, it is bcneficial to use server hints to determine
what to prefctch, However, there is some overhead asso-
ciated with transferring the prefetching hints from the
server side to the prefetching proxy.

Prcfetching from the proxy side is a well studies
concept [IO], [I I], [l]. While a rcduction latency of up to
50% has been seen, it only camc at the expense of signifi-
cantly increasing the amount of traffic on the network. It
is hard to determine the effect of a clogged network on
latency: clearly this will adversely affect it.

While we are not aware o f any literature on server
side prefctching, it should bc possibfe to reduce latency
by prefctching a dynamic web page on the server. If there
i s knowledge that a web page will be requested in the near
future, the server can prefetch this page so when the
request is made the wch page is already constructed and
the client does not have to incur the latency associated
with constructing it. However, the only time when this
scheme will bc cost effective is when n rapid change of

data, on which the page construction depends, i s present,
Without this, prefetching on the server sidc will not yield
better results than a simple caching scheme on the server
and might adversely effect the web server performance by
taking vaiuabie CPU time.

83 Other schemes

In most cases caching and prefetching schemes do
not attempt to cachdprefetch a dynamic web page. The
assumption is that dynamically constructed web page
might constantly change, and therefore any form of cach-
ing and prefetching is prohibited. Delta encoding [SJ[61
reduces this problem by only sending the portion of the
binary file, which changed since the last version stored on
the proxy sidc. HTML he-Processing (HPP) 141 is an
HTML extension, which distinguish a static md a
dynamic portion. While the static portion can be cached,
the dynamic portion is generated for each request. Since
a large portion of dynamic web pages is static, such a
scheme can alleviate the perceived latency.

C Client-Side Prefetching

Network bandwidth is the biggest limitation to the
WWW expansion. With unlimited bandwidth, video con-
ferencing, Internet broadcasting, and Internet phone
would be widely in use. To alleviate the bandwidth limi-
tation, methods to reduce the clients perceived latency
were revised and borrowed from classic I D . ?'he first
ones were proxy caching and client side caching, which
are widely implemented.

However, the rise in dynamic and specialized wcb
content has limited these caching methods, because a
growing number of web pages cannot be cached, More-
over there is an extra latency associated with generating
those objects. Confronting those problems are methods
such as HPP and delta encoding. Unfortunately they were
never widely implemented because thcy require coopera-
tion between the proxy and the server. It is unlikely that
these methods will ever be widely accepted unless they
become part of the HTTP protocol or some other stan-
dard, The only widely implemented method to specifi-
cally reduce the object creation latency, is server-side
caching. Proxy-side prefetching was shown to yield good
reduction in the client's perceived latency, but only at the
expense of large increase in network traffic. The lesson
learned from PUSH technology will probably prwcnt
proxy prefctching from being implemented until the
increase in network trafic can be tamed. We observe that
for a latency reduction technique to be implemented it
must not yield increase in network traffic and it must be

195

an independent component: one that does not need the
cooperation of another tier.

Server-side caching i s trying to reduce only the
object creation latency. Proxy-side caching and prefetch-
ing, on the other hand, are aimed at reducing extemJ
latency. A secondary effect to reducing external latency,
is the reduction of object creation latency. Attempting to
reduce internal latency will result in targeting external
and object creation latencies as well. Targeting internal
latency is critical in heterogeneous environments, because
the slow connection between the client and the proxy-
server is often the bottleneck. Unfortunately the only
scheme that tries to reduce the internal latency is client-
side caching, and the limits of this scheme have been dis-
cussed above.

In this paper we consider client-side prefetching,
where the user is in control of the prefetch process. By
prefetching from the client side we target all portions of
the latency; by having the user decide what and when io
prefetch, we eliminate any extra network traffic usually
created by prefetching. Such a prefetching mechanism
can be implemented on the client machine with out any
cooperating from the proxy or the server. As discussed
above, the ease of implcmentation, and the lack of extra
network traffic, makes such mechanism a strong candi-
date for wide spread implementation. Such mechanism
can be implemented as part of current web browsers or as
a plug-in for a browser.

The
mechanism
can be sim-
ple. Its main
function is to
provide a click
to prefetch
mechanism
(i.e. by press-
ing Shift and
left clicking on
a hyperlink),
in addition to
the for Figure 3 - Web Site’s Tree Structure

nism present
in current browsers (left click on a hyperlink). If the click
and prefetch mechanism is used instead of bringing the
page and displaying it, the browser brings to pagc and
keep it internally, The user can access the prefetched page
via a list similar to a favorite list. When the user chooses,
a page from the prefetch list, it is displayed. Any attempt

fetch mecha-

to fetch a page via the click and fetch mechanism will
take precedence over the prefetching mechanism. This
idea can be taken further with precedence set among the
prefetched pages, prefetch and display mechanism (where
the pages are displayed only when they are fully fetched),
and so on.

Prefetching in 110 systems has three important met-
rics: coverage, accuracy and timeliness. Coverage deter-
mines the fraction of web pages prefetched before
requested by the client. Accuracy measwe6 what fraction
of the web pages were prefetched and actually used by the
client. Timeliness measures what fiaction of the web
pages prefetched before being requested, Since prefetch-
ing is left to the uscr, we assume 100% accuracy, or in
other words, every web page requested by the prefetching
mechanism is used. This is in contrast to other prefetch-
in& mechanisms, where there is a tradeoff between cover-
age and accuracy; client side prefetching will not
overload the network. The coverage and timeliness are
dependent upon user training and the specific web site.
All simulations assume ideal user, who, given a proper
prefetching mechanism, will fully utilizc it. In ordcr to
prefctch an object, the user needs to know ahead of time,
that she would like to use it in a short while. As we will
show, the tree like structure, used by most web sites, can
be employed to advantage prefetching.

Take for example a web site that provides news.
Figure 3 shows the structure of such a web site in which,
the main page contains the headlines with hyperlinks to
different articles. Oncc the end-user rcads the headlines,
she knows which article she would likc to read. Assume
that she would like to read articles 1,2 and 6. Figure 4a
shows a typical web session over time for this sequence
of pages. From the main page the user will request the
first article (i.e. article 1) and once the page is down-
loaded the user will spend time reading it. The user then
hits thc BACK button to go back to the main page, this
time the main page takes very little time to download
because it is cached on the client. Next the user chooses
to download the second article she is interested in (i.e.
article 2). This process continucs for the rest o f the ses-
sion with article 6. An important observation is that the
user knew she would like to read articles 1,2 and 6 &er
reading the main page. Figure 4b shows the same web
session, depicted in 4a, when the client prcfetching mcch-
anism i s employed. While article I i s being read article 2
can be prefetched. Once the user demmds article 2 for
viewing it already resided in the client machine and there-
fore the perceived latency i s zero, The potential of
improving performance is obvious, the question i s how
much opportunity for such prefetching the structure of the

Fetch

Read

Fetch

had

tima

time

Figure 4 - Web Sessions: a) No Prefetching b) With Prcfetching

web sites provides.

11. SIMULATION ENVIRONMENT

In our simulations wc uscd traces obtained within a
firewall web proxy used by Digital Equipment Corpora-
tion [lo] to simulate a homogeneous environments. All
HTTP requests from client within Digital to servers on
the Internet made between, August 29* and September
22”d, were recorded. 24,659,182 such requests were
made coming from 17,354 different clients to 140,506
distinct servcrs. The proxy server provided no latency
reduction methods; it served as a method for crossing the
corporate firewall.

A Simulation netails

As in [lo] we focused on the latency seen when
retrieving a web page and thercfore concentrated on
requests using the HTTP protocol and GET method.
Failed events such as aborted connections wme part of thc
calculation, since the user still waited for those requested
until shc abortcd them, Since the clicnt is initiating thc
prefetching, requests for cgi-bin object were included.

The Digital traces were taken in a three-tier homo-
geneous environment. We used the trace’s external
latency (e) and total latency (t) to calculate the internal
latency (i = t-e). Notice that the external latency (e) in the
traces encompasses both the object creation and external
latency as discussed before.

In order to mimic a heterogeneous environment, we
recalculate the various latencies. and the time when a
request was initiated. The internal latency was obtained
by dividing the object size by 56,000 bits per second
(bps). The value, 56.000 bps, serves as an upper bound
on data transfer through regular phone lines. The external
latency was calculatcd by assuming a TI connection. The

overall latency was calculated by adding the internal and
external latencies calculated. The time a request was ini-
tiated was adjusted by adding the time the page was used
(the difference between two requests minus the total
latency of the first request) to the calculated heterogc-
neous latency and then adding it to the time the previous
request was initiated.

For both environments, the latency after prefetch-
ing was calculated by subtracting thc amount of time the
client had to prefetch a web page from the total time (I*-
pt). If the result turned out negative, thc web page was
considered to have zero latency,

The simulations were done on a web page granular-
ity (as oppose to an object granularity). Since the traces
were base on objects we used a heuristic to construct and
equivalent page based trace. A web page was considered
to be a HTML or cgi-bin file and all the following objects
requested by the same user (GIF, P E G files, etc.) until
the next HTML or cgi-bin file was encountered.

Using the heuristics describcd next, the simulations
stepped through the traces constructing the web pages,
and determining whether the client was able to prefetch
this web page. If it was ablc to prefetch a page, the
amount of time i t had to prefetch the page was calculated,
and the perceived latency was calculated by subtracting
the prefetch time from the latency. The overall latency
for the traces is determined by adding the user’s perceived
latency for each web page. The total perceived latency is
compared to the total latency when using no prefetching.

B Slmuiation Heuristics

Since the traces do not indicaw whether a user is
able to prefetch the next page, nor provide the data to con-
struct the web site structure (i.e. what other web pages
does the current web page have a hyperlink to), we used
three heuristics. The first one, which is termed “vanilla”,
assumes that a user can always prefetch the next web

197

page. The second one, termed Lcsame-server”, assumes
that a user cm only prefetch a web page if the web page
resides on the same server as the current page. The last
heuristic assumes that a web page can only be prefetched
if in a tree structure, and it is a leaf of this tree. Since the
trams do not provide the information required to know
weather a web page is in a tree structure, we attempted to
construct it. A web page was assumed to be in a tree
structure if it showed the following pattern: a, b, a, c, a,
d . . . In this case we assumed pages b, c and d are leaves
and therefore prefetchable. The tree heuristic i s an under
estimation since web browsers can be configured to use
the client-side caching. Although page3 b, c and d are
leafs of page a, the pattern which will be seen on the
server will be a, b, c, d, and the tree structure is therefore
lost.

~

Total latency 1

External latency

PercentaF of external
latency elt

Heierogeneoua

Total latency f

Extcrnal latency

Percentage of external
latency elt

C Sources of Inaccuracy

0.21

0.11

0.50

2.96

1.03

0.35
We note several sources of inaccuracy for the pre-

sented simulations. Our result only shows the potential in
client-sidc prefetching, and by no mean it shows the
improvement, which will be obtained by using the client-
side prefetching mechanism,

0.20

0.1 1

0.53

To get the true benefit from the client-side
prefetching, the user must be trained, browsing a prefetch
friendly web site, and an easy prefetching mechanism.
No page rendcring time is included and we did not con-
sider any overlapping of the external and internal laten-
cies.

0.21

0.11

0.50

[It. RESULTS

The purpose of the simulations i s to show the
potential for client-side prefetching with respect to client-
side and proxy-side caching for both homogeneous and
heterogeneous environments. We also show the effect of
client-side prefetching when used in conjunction with
those methods.

A Traccs Collected on the Proxy

Table I presents the percentage of external latency
with respect t D total latency for homogeneous and hetero-
geneous environments. The external latency constitutes
about 50% in the homogeneous environment. In the het-
erogeneous cnvironment, on the other hand, it constitutes
only about 35% of the total latency. The external latency
puts a bound on most latency reduction schcmes, which
address only the external latency portion. Proxy caching,
and prefetching are examples For such techniques. A per-

fect proxy cache (hit ratio of 100%) will reduce the
latency only by 50% for homogeneous environment, and
35% for a heterogeneous environni - -.--

0.35 0.35

Table 1: External Latency in Homogeneous &
Heterogeneous Environment

Table 2 depicts the latency reduction when using
client-side prefetching in a homogeneous environment.
When using no latency reduction techniques the latency is
0.21 seconds for, the first week. Using client-side
prefetching, the latency reduction for vanilla, same-
server, and tree schemes is 81%, 76 % and 52 % respec-
tively. An important observation i s that the average
length of tree prefetching is 3.2. This suggests the tree
heuristic provide pessimistic results, for the reasons dis-
cussed above. Week 2 and 3 depicts similar behavior.

When using proxy caching, the latency reduces
from 0.21 seconds to 0.17 seconds - a 19% improvement.
Clicnt-side caching reduces the latency to 0.16 scconds,
and when using both client-side and proxy-side caching,
the Iatency reduces to 0.1 6 seconds - a 24% improvement.
Using client-side prefetching yields improvement of 37%
for bee prefetching, and up to 75% improvement for
vanilla prefetching.

Table 2 show that an advantage can be gained by
using client-side prefetching in conjunction with other
latency reduction methods, When using client-side
prefetching in conjunction with both client-side and
server-side caching the latency reduction runs from 62%
for the tree scheme up to 86% reduction in latency for ihc

198

Tohi

I Proxy I 0.17 I (1.17 I 0.17
cmchlng

W k l Week2 Week3

0.21 0.20 0.20

Cllent
cichlng

1 0.20 I 0.20 I 0.20

Clicnt Plofadiing Vrnilla 0.04 0.04 0.05

Same ~ m m 0.05 0.M 0.05

I T m I 0.10 1 0.10 I 0.10

Same sewel

Tree

0.04 0.05 0.05

0.m 0.00 0.09
I L I I

Wllh Cllent Clrche Vanilla 0.04 0.04 0.04

S a m m w r 0.05 0.W 0.05

Witb Both C n c h

Tree o m 0.10 0.00

Vaollla 0.03 0.03 0.04

Table 3 depicts the simulation results in a heteroge-
neous environment. The improvement in latency is from
40% for the tree schcme up to 63% for vanilla schcme.
The improvement shown for the homogeneous environ-
ment is larger. This is diie to the limitation in viable
prefetching time. Prefetching is done while the user is
observing other pages. However, in a heterogeneous
environmcnt the observation time with respcct to the total
session time is lower than in the homogeneous environ-
ment, there is a smaller percentage of the time to fetch
pages. Therefore, the improvement due to client-side
prefetching is lower in percentage for the heterogeneous
cnvironment. Notice however, that the user in the hetero-
geneous environment ends up saving 1.78 seconds due to
clicnt-side prefetching, compare IO a user in a homoge-
ncous environment. Since the latency i s much more
noticcabte in the heterogeneous environment, client-side
prcfctching might be more beneficial in a heterogeneous
environment, or for large objects in the homogeneous
environment.

Same sewer

Tree

B Results Using Data Collected on the Client

0.04 0.05 0.05

o.oa o . 0 ~ 0.m

The DEC traces havc a few shortcomings: To pre-
serve anonymity sake the information provided by the
DEC traces regarding the URLs, is limited. This makes it
hard to evaluate the client-side prefetching technique. The
DEC traces were taken on the proxy side, which make it
hard to estimate the overlap between the internal and
external latencies. For those reasons we collected our own
traces on the client side. Code was embcdded in web
pages to collect, using cookies, when a page was
requested, fully fetched, and left by the user. This infor-
mation gave us a true picture of the latency reduction
potential inherent by the client-side prefetching by a mix
of users and environments on the WWW.

Samewrwer

Tree

cachlng

Cllent
cachlng

1.10 1.15 1.18

1.85 1.85 1.64

I Vanilla I 1.12 I 1.16 I 1.17 1
Cllmt M c h l n g ,

Vnnltla
With b a y Cache

1.10 1.16 1 Samessrver I 1-1 1
1.95 1 :::-I 1 Tree 1.77 1.70

Vanllla 1.00 1.10

Samesawer 1.12 1.17 1.1B

Wlth CUeat mcht

I Tree

Vanilla I 1.05 I 1 ,OB I 1.DB 1
Wlbh Bath Csches

Table 3: Latencies in Heterogeneous Environment (avg.
in seconds)

The traces were obtaincd constructing our own
simple web site. The structure of the web site was kept
simple and consists of on index page pointing to 15 dif-
ferent pictorial web pages. We collected data between

199

August 15* 1999 and November lSth 1999. 144,649 dif-
ferent users made 1,345,235 different requests for web
pages.

The size of the web pages ranged from 113K to
384K. We acknawledge that the structure of the web site
is tailored for the client-side prefetching technique but the
usage of pictorial pages is a limiting factor because the
user i s observing the pages, while they are downloading.
This reduces the observation time, which can be used for
prefetching.

While the average latency per page was 12.53 sec-
onds without prefetching, the usage of client-side
prefetching was able to reduce it to 4.32 seconds. This is
almost a three-fold decrease in latency. The average con-
secutive number of pages to be prefetched was 4.92
pages.

IV. SUMMARY

Using trace driven simulations we have cxplored
tho potential of a client-side prefetching mechanism. Such
mechanism can bc implemented on the client-side with-
out the cooperation from other tiers; it will not increase
ovcrall network traffic. The positioning o f the mechanism
on the client side result in attempting io reduce all por-
tions of latency, so in the best case i t will reduce the
latency to zero. Most latcncy rcduction techniques cannot
reduce internal latency, which can be a big factor of over-
all latency, especially in heterogeneous environments.

Our simulations shows that client-side prefetching
outperforms both proxy, and clicnt-side caching, further-
more, it can work in conjunction with other latency reduc-
tion techniques. We advocate the inclusion of such
mechanism in future web browsets.

V. REFERENCES

[11 A. Bestavros and C. Cunha A p'refetchingpru-
tocol using client speculation for the WWW. Tec. Rep.
TR-95-011, Boston University, Department of Computer
Science, Boston, MA 022 15, April 1995,

[Z] A. Iycngar and J. Challenger. Improving web
server performance by cacheing dynamic data. Proceed-
ings of the USENIX Symposium on Internet Technologies
and Syslems.

and J,Mogd. Rate of change and other metrics: A live
study ofthe World Wide Web. Proceedings U the Sympo-
sium on internetworking Systems and Technologies.
USENIX, December 1997

[4] F. Dough, A. Haro, and M. Rabinovitch..
HPP: HTML macro-preprocessing to support dynamic
document caching. Proceedings of the Symposium ow
Internetworking Systems and Technologies, pages 83-94.
USENIX, December 1997.

[SI G. Baga, F. Douglis, and M. Rabinovitch.
Optimistic deltas for WWW latency reduction. Proceed-
ings of 1997 USENIX Technical Conference, pages 289-
303, Anaheim, CA January 1997.

[6j J. Mogul, F. Douglis, A. Foldmann, and B.
Krishnanmurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceedings of SIG-
COMM97, pages 191-194, Cannes, France, September
1997.

[7] R. Caceres, F.Douglis, and A.Feldmann, Web
proxy cacheing: The devil is in the details.

181 S.D.Gribble and E.A. Brewer. System design
issues for internet middleware services: Deduction from
a large client tracd. Proceedings of fhe Symposium on
Internemorking *stems and Technologies, pages 207-
218. USENIX, Decembcr 1997.

[9] S.Williams, M. Abrams, C.R. Standridge and
C. Abdulla. Removal policies in network caches for
world wide web documents. Proceedings ofthe 1996
SIGCOMM. p ~ . 293-305, ACM, July 1996.

[IO] Thomas M. Kroger, D. E. Long, and J.C.
Mogul. Exploring the bounds of web latency reduction
from cacheing and prefetching. Proceedings of the Sym-
posium on Interworking Sy-stems and Technologies, pages
13-22. USNIX, December 1997.

[I l l V.N. Padmanabhan and J.C. Mogul. Using
predictive prefetching to improve world wide web
latency. Computer Communications Review, vol 26, pp
22-36, July 1996.

131 P. Douglis, A. Feldmann, B. Krishnamurthy,

200

