2000
April,

IEEE International

2000. Austin, Texas.

Symposium on Performance

Analysis of Systems and Software.

WEB LATENCY REDUCTION VIA CLIENT-SIDE PREFETCHING

Avinoam N. Eden

Brian W. Joh

Trevor Mudge

Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor
ane@engin.umich.edu, tnin(@ececs.umich.cdu, bwi@umich,edu

ABSTRACT

The rapid growth of the WWW has inspired
numerous techniques to reduce web latency. While some
of these techniques have not been implemented because
they either increase network traffic or reguire coopera-
tion between tiers, recent studies cast a shadow on tech-
nigties already in use (e.g. proxy caching) as a result of
the increasingly dynamic aspects of the WWW. In partic-
ular, the proliferation of dynamically generated web
pages {i.e. cgi, ASP), which ave either linked fo a data-
base, or extract information from cookies, reduces the
effectiveness of cacheing techniques. Most techniques
aftempi to improve on part of the averall latency, and
oflen neglect to address the internal latency, which can be
a serious bottleneck in heterogeneous environments.

We propose a client-side prefetching mecha-
nism, where the decision of what to prefetch is lefl to the
user. We found it has the potential of reducing latency by
up to 81% in a homogeneous environment and 63% in a
heterogeneous environmeni. In data taken on the client,
the technigue depicted the potential to decrease latency
by three-fold Client-side prefetching does not increase
nerwork traffic, it attempt to improve on all parts of
latency, and it can be implemented on the client side,
without the cooperation of any other tier. Moreover, it
can work seamlessly with any other latency reduciion
technique. We advocate the inclusion of a suitable mech-
anism in future web browsers to support client-side
prefetching.

L INTRODUCTION

The rapid growth of the WWW inspired numerous
techniques to reduce web latency. In this section, we first
describe the possible WWW environments, which those
techniques might work within. We than proceed to
describe the different techniques in the context of those
environments and highlight the advantages and disadvan-

0-7803-6418-X/00/$10.00 © 2000 IEEE

tages. Finally we go on to describe client-side prefetch-
mg, which we believe can overcome most of the
disadvantages of earlier techniques.

A Environment

Figure 1 depicts a classic WWW architecture. A
web browser restding on the client machine is used to
request web pages from the server employing the HTTP
protocol. The request is channeled through a proxy
server, which might be used as a firewall, for caching,
prefetching or/and filtering requests. If the proxy server
cannot service the request, it forwards it to the content
provider, which uses the web server to service the
request. Depending on the request, the server might do
one of two things: If the request is static object (i.c.
HTML, JPEG, GIF, Applet, etc.), the server transfers it
back to the proxy server, which delivers it to the client.
On the other hand if the request is for a dynamic object
(i.e. ASP, CGI, etc.), the server first constructs it, and
only then sends it to the proxy. The construction of the
object might first require querying a database server, then
constructing the object according to the result set. In
another example, a dynamic object might be constructed
by first requesting a cookie ftom the client and then con-
structing the page. As can be seen in figure 1, we divided
the latency into three components: internal, external, and
object creation latencies. The internal latency consist of
the time it takes the proxy server to transfer the object to
the client. The external latency is the time it takes the
server to respond and transfer the object to the proxy
server. Object creation latency applies only to objects,
which are created dynamically. It includes the time it
takes to the server to construct the object, either by query-
ing a database, a cookie, or simply processing a script.

Figure 2 exhibits the three most common configu-
rations in use on the WWW. The first describes as the
homogeneous three-tier architecture (2a), where the
proxy server is connected via a fast connection to both the
server and the client. This kind of architecture is widely
used in corporate settings, where the middle tier (proxy)
might be used to provide security (a firewall), reduce

183

http://ich.edu
trev
Typewritten Text
 2000 IEEE International Symposium on Performance Analysis of Systems and Software.
 April, 2000. Austin, Texas.

getwer (content provider)

Pd

client PrOoXy scrvel
web borwser -— M)
E‘-‘ ;—c_ —j \ I_ca.r_-h.mg J l_f‘ﬂ‘tqrmc 2|
\ ’_puﬂntclu'ng_l @wlﬂ 1
o ¥
o, .

internal latenesr

oxtornal latencyr

wab saxver
{ =y
ri
!

ocbjact creation latencyr

Figure 1 - General WWW Architecture

latency {proxy caching), or monitor and filter content. In
the heterogeneous three-tier (2b) architecture the proxy is
connected to the server via fast connection while con-
nected to the client via a slow connection (i.e. modem),
This architecture is used by most Internet home-users,
where the middle tier is usually a modem pool. While
this is its main role, it can also be used for caching,
prefetching, etc. In the third architecture (2¢), the proxy
is not present and the client is connected to the server via
fast connection. A fourth architecture, where the client is
connected to the server via a modem falls under a cate-
gory of a Bulletin Board Service (BBS) and will not be
described here.

client proxay server ||cliznt proxv sexver (jclient proxy server

fast fast fast slow fast
2-tier

3-tier homogeneous 3-tier heteroganacus

Figure 2 - General WWW Architecturey
B Latency Reduction Techniques

The following section provides a brief overview of
latency reduction techniques.

B.1 Cacheing

Cacheing in the WWW can be divided into three
categortes: proxy, clients, and server side caching. In
proxy caching a computer (the proxy server) serves as a
cache of ohjects for a set of WWW clients. Ideally, the
proxy server is physically located closer to the clients and
has fewer clients to serve than the content provider (the
WWW server). Clearly, if the proxy server has an object
cached, it will be able t service a request for this docu-
ment faster then the content provider. Due to the proxim-
ity to the client and smaller number of clients the proxy
has to service. Early stodies suggested a significant

latency reduction if proxy caching is employed.

Gribble and Brewer showed that proxy cache hit
ratios can approach 60% for a pool of 8000 clients (8], It
was shown that the hit ratio is a function of the number of
clients the proxy server services. Therefore, if the proxy
services more than 8000 clients, the hit ratio is likely to
increase. A later study by Kroger et al. accounted not
only the cache’s hit ratio, but also the reduction in the cli-
ent's perceived latency [10]. In this scenario it was shown
that the latency reduction could only reach 26% at best,
Another setback to proxy caching was shown by Caceres
et al: by looking at more details such the presence of
cookies in HTTP requests they observed a hit ratio of
only 35.2% [7]. Furthermore, by considering aborted
connection they showed that the network traffic between
the proxy server and the service provider actually
increased. None of the studies above took in consider-
ation client-side cacheing. It is probable that some of the
objects, cached and serviced by the proxy server, are
already cached on the client's side. For example, a heavy
use of the BACK buiton on the web browser might regis-
ter a request at the proxy server (depending on the
browser configuration), but the objects requested are
already in the client's cache and therefore can be serviced
by that cache. We suspect that not considering client-side
caching while examining proxy caching, results in an
optimistic evaluation of proxy caching, and we advocate
further studies to consider client-side caching,

In spite of the pessimistic resulis from recent stud-
ies, proxy cacheing is employed. We speculate that as the
number of dynamically web pages constructed increases,
the benefit of employing a cache on a proxy server will
diminish.

In client side cacheing the objects (i.e. HTML, GIF
and JPEG files etc.) are stored for a limited period of time
on the local hard drive of the client. Only request made
by the client, are cached, therefore, the benefit of sharing

194

cached object brought by other clients does not apply.
We speculate that a large portion of the benefit from cli-
ent side caching is limited to the use of the BACK button
in the web browser (i.e, the client visited the page in the
current session and return to it using the BACK butten).
Client side caching is employed in most web browsers on
the market and cacheing is activated by default.

Server side cacheing caches the content of web
pages, which are generated dynamically. Downloading
dynamically generated web pages (i.e. ASP and CGI
files) can incur large object creation latency. For example
the construction of a page cannot be completed before the
query is done for if querying data in a database generates
a web page, the construction of the page cannot be com-
pleted before the query is. If the query takes fong to com-
plete the user will natice a large latency when
downloading this page, Since temporal locality exists in
access pattern to the web server (i.e. if a page is accessed
by one client, it is likely to be accessed by other clients in
the near future), caching those pages on the server is ben-
eficial. With server-side caching only few clients wiil
incur the latency associated with generating the dynamic
web page. This technique was successfully used by IBM
in the 1996 Atlanta Olympic games’ official web site [2].

B.2 Prefetching

Prefetching on a proxy server has also been
explored. The knowledge whether to fetch a page or not
can come from the prefetching side or the server side.
Since the server has more information regarding request
patterns, it is beneficial to use server hints to determine
what to prefetch, However, there is some overhead asso-
ctated with transferring the prefetching hints from the
server side to the prefetching proxy.

Prefetching from the proxy side is a well studies
concept [10], {11], [1]. While a reduction latency of up to
50% has been seen, it only came at the expense of signifi-
cantly increasing the amount of waffic on the network, It
is hard to determine the effect of a clogged network on
latency; clearly this will adversely affect it.

While we are not aware of any literature on server
side prefetching, it should be possible to reduce latency
by prefetching a dynamic web page on the server. If there
is knowledge that a web page will be requested in the near
future, the server can prefetch this page so when the
request is made the web page is already constructed and
the client does not have to incur the latency associated
with constructing it. However, the only time when this
scheme will be cost effective is when a rapid change of

data, on which the page consiruction depends, is present.
Without this, prefetching on the server side will not yield
better results than a simple caching scheme on the server
and might adversely effect the web server performance by
taking valuable CPU time.

B.3 Other schemes

In most cases caching and prefetching schemes do
not attempt to cache/prefetch a dynamic web page. The
assumption is that dynamically constructed web page
might constantly change, and therefore any form of cach-
ing and prefetching is prohibited. Delta encoding [5]{6]
reduces this problem by only sending the portion of the
binary file, which changed since the last version stored on
the proxy side. HTMI. Pre-Processing (HPP) [4] is an
HTML extension, which distinguish a static and a
dynamic portion. While the static portion can be cached,
the dynamic portion is generated for each request. Since
a large portion of dynamic web pages is static, such a
scheme can alleviate the perceived latency.

C Client-Side Prefetching

Network bandwidth is the biggest limitation to the
WWW expansion. With unlimited bandwidth, video con-
ferencing, Internet broadcasting, and Internet phone
would be widely in use. To alleviate the bandwidth limi-
tation, methods to reduce the clients perceived latency
were revised and borrowed from classic I/0. The first
ones were proxy caching and client side caching, which
are widely implemented.

However, the rise in dynamic and speciatized web
content has limited these caching methods, because a
growing number of web pages cannot be cached, More-
over there is an extra latency associated with generating
those objects. Confronting those problems are methods
such as HPP and delta encoding. Unfortunately they were
never widely implemented because they require coopera-
tion between the proxy and the server. Tt is unlikely that
these methods will ever be widely accepted unless they
become part of the HTTP protocol or some other stan-
dard, The only widely implemented method to specifi-
cally reduce the object creation latency, is server-side
caching. Proxy-side prefetching was shown to vield good
reduction in the client's perceived latency, but only at the
expense of large increase in network traffic. The lesson
learned from PUSH technofogy will probably prevent
proxy prefetching from being implemented until the
increase in network traffic can be tamed. We observe that
for a latency reduction technique to be implemented it
must not yield increase in network traffic and it must be

195

an independent component: cne that does not need the
cooperation of another tier.

Server-side caching is trying to reduce only the
object creation latency. Proxy-side caching and prefetch-
ing, on the other hand, are aimed at reducing external
latency. A secondary effect to reducing external latency,
is the reduction of object creation latency. Attempting to
reduce internal latency will result in targeting external
and object creation latencies as well. Targeting internal
latency is eritical in heterogeneous environments, because
the slow connection between the client and the proxy-
server is often the bottleneck. Unfortunately the only
scheme that tries to reduce the internal latency is client-
side caching, and the limits of this scheme have been dis-
cussed above.

In this paper we consider client-side prefetching,
where the user is in control of the prefetch process. By
prefetching from the client side we target all portions of
the latency; by having the user decide what and when to
prefetch, we eliminate any extra network traffic usually
created by prefetching. Such a prefetching mechanism
can be implemented on the client machine with out any
cooperating from the proxy or the server. As discussed
above, the ease of implementation, and the lack of extra
network traffic, makes such mechanism a strong candi-
date for wide spread implementation. Such mechanism
can be implemented as part of current web browsers or as
a plug-in for a browser.

The
mechanism
can be sim-
ple. Tts main
function is to
provide a click
to prefetch
mechanism
(i.e. by press- e s
ing Shift and
left clicking on
a hyperlink),
in addition to
the click for
fetch mecha-
nism present
in current browsers (left click on a hyperlink), If the click
and prefetch mechanism is used instead of bringing the
page and displaying it, the browser brings to page and
keep it internally, The user can access the prefetched page
via a list similar to a favorite list. When the user chooses,
a page from the prefetch list, it is displayed. Any attempt

Figure 3 - Web Site*s Tree Structure

to fetch a page via the click and fetch mechanism will
take precedence over the prefetching mechanism. This
idea can be taken further with precedence set among the
prefetched pages, prefetch and display mechanism (where
the pages are displayed only when they are fully fetched),
and so on.

Prefetching in I/Q systems has three important met-
rics: coverage, accuracy and timeliness. Coverage deter-
mines the fraction of web pages prefetched before
requested by the client. Accuracy measures what fraction
of the web pages were prefetched and actually used by the
client. Timeliness measures what fraction of the web
pages prefetched before being requested, Since prefetch-
ing is left to the user, we assume 100% accuracy, or in
other words, every web page requested by the prefetching
mechanism is used. This is in contrast to other prefetch-
ing mechanisms, where there is a tradeoff between cover-
age and accuracy; client side prefetching will not
overload the network. The coverage and timeliness are
dependent upon user training and the specific web site.
All simulations assume ideal user, who, given a proper
prefetching mechanism, will fully wtilize it. In order to
prefetch an object, the user needs to know ahead of time,
that she would like to use it in a short while, As we will
show, the tree like structure, used by most web sites, can
be employed to advantage prefetching.

Take for example a web site that provides news.
Figure 3 shows the structure of such a web site in which,
the main page contains the headlines with hyperlinks to
different articles. Once the end-user reads the headlines,
she knows which article she would like to read. Assume
that she would like to read articles 1,2 and 6. Figure 4a
shows a typical web session over time for this sequence
of pages, From the main page the user will request the
first article (i.e. atticle 1) and once the page is down-
loaded the user will spend time reading it. The user then
hits the BACK button to go back to the main page, this
time the main page takes very little time to download
because it is cached on the client. Next the user chooses
to download the second article she is interested in (i.e.
article 2). This process continues for the rest of the ses-
sion with article 6. An important observation is that the
user knew she would like to read articles 1,2 and 6 after
reading the main page. Figure 4b shows the same web
session, depicted in 4a, when the client prefetching mech-
anism is employed, While article 1 is being read article 2
can be prefetched. Once the user demands article 2 for
viewing it already resided in the client machine and there-
fore the perceived latency is zero. The potential of
improving performance is obvious, the question is how
much opportunity for such prefetching the structure of the

196

ain page(znp) artiols | wp article 2 mp articls &
Fatch |—'I I l weticla 1 I " I articls 2 I " i articls &
MWain page e 1C.
Read | I - — A .
tima -
i page arbicla 1 articla 2 articla 6
Feich } 4+ _“ 4i {
i avhicle 1 asticle 2 article 6
Read) i i R
time

Figure 4 - Web Sessions: a) No Prefetching b} With Prefetching

web sites provides.

II. SIMULATION ENVIRONMENT

In our simulations we used traces obtained within a
firewall web proxy used by Digital Equipment Corpora-
tion [10] to simulate a homogeneous environments, All
HTTP requests from client within Digital to servers on

the Internet made between, August 290 and September

227 were recorded. 24,659,182 such requests were
made coming from 17,354 different clients to 140,506
distinct servers. The proxy server provided no latency
reduction methods; it served as a method for crossing the
corporate firewall,

A Simulation Details

As in [10] we focused on the latency seen when
reirieving a web page and therefore concentrated on
requests using the HTTP profocel and GET method.
Failed events such as aborted connections were part of the
calculation, since the user still waited for those requested
until she aborted them, Since the client is initiating the
prefetching, requests for cgi-bin object were included.

The Digital traces were taken in a three-tier homo-
peneous environment. We used the trace's external
latency (e} and total latency (t} to calculate the internal
latency (i =t-e). Notice that the external latency (e) in the
traces encompasses both the object creation and external
latency as discussed before.

In order to mimic a heterogeneous environment, we
recalculate the various latencies, and the time when a
request was initiated, The internal latency was obtained
by dividing the object size by 36,000 bits per second
(bps). The value, 56,000 hps, serves as an upper bound
on data transfer through regular phone lines, The external
latency was calculated by assuming a T1 connection. The

197

overall latency was calculated by adding the internal and
external latencies calculated. The time a request was ini-
tiated was adjusted by adding the time the page was used
(the difference between two requests minus the total
latency of the first request) to the calculated heteroge-
neous latency and then adding it to the time the previous
request was initiated.

For both environments, the latency after prefetch-
ing was calculated by subtracting the amount of time the
client had to prefetch a web page from the total time (I=t-
pf). If the result turned out negative, the web page was
considered to have zero latency.

The simulations were done on a web page granular-
ity (as oppose to an ohject granularity). Since the traces
were base on ohjects we used a heuristic to construct and
equivalent page based trace. A web page was considered
to be a HTML or cgi-bin file and all the following objects
requested by the same user (GIF, JPEG files, etc.) until
the next HTML or egi-bin file was encountered.

Using the heuristics described next, the simulations
stepped through the traces constructing the web pages,
and determining whether the client was able 1o prefetch
this web page. If it was able to prefetch a page, the
amount of time it had to prefetch the page was caloulated,
and the perceived latency was calculated by subtracting
the prefetch time from the latency, The overall latency
for the traces is determined by adding the user's perceived
latency for each web page. The total perceived latency is
compared to the total latency when using no prefetching.

N

B Simulation Heuristics

Since the traces do not indicate whether a user is
able to prefetch the next page, nor provide the data to con-
struct the web site structure (i.e. what other web pages
does the current web page have a hyperlink to), we used
three heuristics. The first one, which is termed “vanilla®,
assumes that a user can always prefetch the next web

page. The second one, termed “same-server”, assumes
that a user can only prefetch a web page if the web page
resides on the same server as the current page. The last
heuristic assumes that a web page can only be prefetched
if in a tree structure, and it is a leaf of this tree. Since the
traces do not provide the information required to know
weather a web page is in a tree structure, we attempted to
construct it. A web page was assumed to be in a tree
structure if it showed the following pattern: a, b, 4, ¢, a,
d... Inthis case we assumed pages b, ¢ and d are leaves
and therefore prefetchable. The tree heuristic is an under
estimation since web browsers can be configured to use
the client-side caching. Although pages b, ¢ and d are
leafs of page a, the pattern which will be seen on the
server will be a, b, ¢, d, and the tree structure is therefore
lost.

C Sources of Inaccuracy

We note several sources of inaccuracy for the pre-
sented simuiations, Our result only shows the pofential in
client-side prefetching, and by no mean it shows the
improvement, which will be obtained by using the client-
side prefetching mechanism,

To pget the true benefit from the client-side
prefetching, the user must be trained, browsing a prefetch
friendly web site, and an easy prefetching mechanism.
No page rendering time is included and we did not con-
sider any overlapping of the external and internal laten-
cies.

L. RESULTS

The purpose of the simulations is to show the
potential for client-side prefetching with respect to client-
side and proxy-side caching for both hamogeneous and
heterogeneous environments. We also show the effect of
client-side prefetching when used in conjunction with
those methods.

A Traces Collected on the Proxy

Table I presents the percentage of external latency
with respect to total latency for homopgeneous and hetero-
geneous environments, The external latency constitutes
about 50% in the hornogeneous environment. In the het-
erogeneous environment, on the other hand, it constitutes
only about 35% of the total latency. The external latency
puts a bound on most latency reduction schemes, which
address only the external latency portion. Proxy caching,
and prefetching are examples for such techniques. A per-

fect proxy cache (hit ratio of 100%) will reduce the
latency only by 50% for homogeneous environment, and
35% for a heterogencous environment,

198

Weekl Week2 Week3
Homogeneous
Total latency ¢ 0.21 0.20 0.21
External latency 0.11 0,11 0.11
Percentage of external 0.50 0.53 0.50
latency e/t
Heteregeneous
Total latency ¢ 2.96 2.84 2.87
External latency 1.03 0.98 L.0O0
Percentage of external 0.35 0.35 0.35
lateney e/t

Table I; External Latency in Homogeneous &
Heterogeneous Environment

Table 2 depicts the latency reduction when using
client-side prefetching in & homogeneous environment.
When using no latency reduction techniques the latency is
0.21 seconds for the first week, Using client-side
prefetching, the latency reduction for vanilia, same-
server, and tree schemes is 81%, 76 % and 52 % respec-
tively. An important observation is that the average
length of tree prefetching is 3.2. This suggests the tree
heuristic provide pessimistic results, for the reasons dis-
cussed above, Week 2 and 3 depicts similar behavior.

When using proxy caching, the latency reduces
from 0.21 seconds to 0.17 seconds - a 19% improvement.
Clicnt-side caching reduces the latency to 0.16 seconds,
and when using both client-side and proxy-side caching,
the latency reduces to 0.16 seconds - a 24% improvement.
Using, client-side prefetching yields improvement of 37%
for tree prefetching, and up to 75% improvement for
vanilla prefeiching,

Table 2 show that an advantage can be gained by
using client-side prefetching in conjunction with other
latency reduction methods, When {lsing client-side
prefetching in conjunction with both client-side and
server-side caching the latency reduction runs from 62%
for the tree scheme up to 86% reduction in latency for the

vanilla scheme,

B Results Using Data Collected on the Client

Woek1 | Woek2 | Waeka ,
The DEC traces have a few shortcomings: To pre-
Total 0.21 0.20 0.20 serve anonymity sake the information provided by the
DEC traces regarding the URLs, is limited. This makes it
Proxy 017 017 017 hard to evaluate the client-side prefetching technique. The
caching DEC traces were taken on the proxy side, which make it
Cliont 0.20 0.20 0.20 hard to estlmgte the overlap between the internal and
caching external latencies, For those reasons we collected our own
traces on the client side. Code was embedded in web
Both caching 018 ¢.18 0.1¢ pages to collect, using cookies, when a page was
Client Praferching Vanilta 0.04 c.04 0.05 requested, fully fetched, and left by the nser, This infor-
008 . mation gave us a true picture of the latency reduction
Seme sever 0.05 : e potential inherent by the client-side prefetching by a mix
Teen .10 0.10 0.10 of users and environments on the WWW.
With Proxy Cache Vanilla 0.03 0.03 o.04 Weak Waek 2 Week
1 3
Same server 0.04 0.05 0.05
Totsl 2.05 2.89 2.88
Tree 0.08 ©.09 0.09
Proxy 2.92 2.85 2.85
With Cllent Cache | Vanilla 0.04 0.04 0.04 eaching
Sama sarver 0.05 0.08 0.05 Cllent 2.75 2.87 2.6
caching
Troa 0.09 0.10 0.00
| Both caching | 272 283 264
With Both Caches | Vanilla 0.03 0.03 0.04
Vanilla 1.12 118 1.17
Same servar 0.04 0.05 0.05 Cllcnt Prefetchlog
Traa 0.08 0.08 0.08 Same erver 112 1.17 118
Table 2; Latencies in Homogeneous Environment {avg, in Tree 1.79 1.81 1.80
seconds) Vanila 1.10 115 1.18
With Proxy Cache
Table 3 depicts the simulation results in a heteroge-
. . . . Same server t.10 1186 1.18
neous environment. The improvement in latency is from
40% for the tree scheme up to 63% for vanilla scheme, Trae 1.77 178 178
The improvement shown for the homogeneouns environ-
tis 1 This is due to the limitation in viabl Vanilla 1.08 1.09 1.10
ment is larger. is is due to the limitation in viable With Clleat cache
prefetching time. Prefetching is done while the user is
observing other pages. However, in a heterogenecus Same sarver 112 117 1.18
environment the observation time with respect to the total Tees 1.88 168 1.88
session time is lower than in the homogeneous environ-
ment, there is a smaller percentage of the time to fetch With Hoth Caches Vanilia 105 1.08 1.08
pages. Therefore, the improvement due to client-side
prefetching is lower in percentage for the heterogeneous Same server 1.10 115 1.48
cnwronment: Motice however, th:?t the user in the hetero- Tren 165 1.65 164
geneous environment ends up saving 1.78 seconds due to

client-side prefetching, compare 10 a user in a homoge-
neous environment. Since the latency is much more
noticeable in the heterogeneous environment, client-side
prefetching might be more beneficial in a heterogeneous
environment, or for large objects in the homogencous
environment,

Table 3: Latencies in Heterogeneous Environment (avg.
in seconds)

The traces were obtained constructing our own
simple web site. The structure of the web site was kept
simple and consists of on index page pointing to 15 dif-
ferent pictorial web pages. We collected data between

198

August 151 1999 and November 15t 1999, 144,649 dif-
ferent users made 1,345,235 different requests for web

pages.

The size of the web pages ranged from 113K to
384K. We acknowledge that the structure of the web site
is tailored for the client-side prefetching technique but the
usage of pictorial pages is a limiting factor because the
user is observing the pages, while they are downloading.
This reduces the observation time, which can be used for
prefetching.

While the average latency per page was 12.53 sec-
onds without prefeiching, the usage of client-side
prefetching was able to reduce it t0 4.32 seconds. This is
almost a three-fold decrease in latency. The average con-
secutive number of pages to be prefetched was 4.92

pages.

IV. SUMMARY

Using trace driven simulations we have explored
the potential of a client-side prefetching mechanism, Such
mechanism can be implemented on the client-side with-
out the cooperation from other tiers; it will not increase
overall network traffic, The positioning of the mechanism
on the client side result in attempting 1o reduce all por-
tions of latency, so in the best case it will reduce the
latency to zero, Most latency reduction techniques cannot
reduce intemal latency, which can be a big factor of over-
all latency, especially in heterogeneous environments.

Our simulations shows that client-side prefetching
outperforms both proxy, and client-side caching, further-
more, it can work in conjunction with other latency reduc-
tion techniques. We advocate the inclusion of such
mechanism in future web browsers,

V. REFERENCES

[1] A. Bestavros and C. Cunha A prefetching pro-
tocol using client speculation for the WWW. Tec. Rep.
TR-33-011, Boston University, Department of Computer
Science, Boston, MA 02215, April 1995,

[2] A.Iyengar andJ. Challenger. Improving web
server performance by cacheing dynamic data, Proceed-
ings of the USENLX Symposium on Internet Technologies
and Systems.

{3] F. Douglis, A. Feldmann, B. Krishnamurthy,

and J.Mogul. Rate of change and other metrics; A live
study of the World Wide Web. Proceedings o the Sympo-
sium on Internetworking Systems and Technmologies.
USENIX, December 1997

[4) F. Douglis, A. Haro, and M. Rabinovitch..
HPP: HTMIL macro-preprocessing to support dynamic
document caching. Proceedings of the Symposium on
Internetworking Svstems and Technologies, pages 83-94,
USENTIX, December 1997,

(51 G. Baga, F. Douglis, and M. Rabinovitch.
Optimistic deltas for WWW latency reduction, Proceed-
ings of 1997 USENIX Technical Conference, pages 289-
303, Anaheim, CA Januvary 1997,

[6] J. Mogul, F. Douglis, A. Feldmann, and B.
Krishnanmurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceedings of SIG-
COMM'97, pages 191-194, Cannes, France, September
1997,

[7]1 R. Caceres, F.Douglis, and A.Feldmann, Web
proxy cacheing: The devil is in the details.

{8] S.D.Gribble and E.A. Brewer. System design
issues for internet middleware services: Deduction from
a large client trace. Proceedings of the Symposium on
Imternetworking Systems and Technologies, pages 207-
218. USENIX, December 1997,

9 S.Williams, M. Abrams, C.R. Standridge and
C. Abdulla. Removal policies in network caches for
world wide web documents. Proceedings of the 1996
SIGCOMM. pp, 293-305, ACM, Jyly 1996,

[10]) Thomas M. Kroger, D. E, Long, and J.C.
Mogul. Exploring the bounds of web latency reduction
from cacheing and prefetching, Proceedings of the Sym-
posium on Interworking Svstems and Technologies, pages
13-22. USNIX, December 1997.

[11] V.N. Padmanabhan and J.C. Mogul. Using
predictive prefetching to improve world wide web
latency. Computer Communications Review, vol 26, pp
22-36, July 1696,

200

